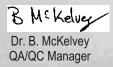
CERTIFICATE OF ANALYSIS BASELINE[®] Hydrobromic Acid


PRODUCT NUMBER: BA-08 L						OT NUMBER: 8203052					ASSAY (HBr, w/w): 49%					
	average evaporat Nitric Aci elements	of three ali ed to drynes id. Operatic (indicated	quots subs ss, the resul ons are con by *), the a	ampled fror ting residue ducted und cid samples	n three sau is reconsti ler Class 1 s are dilute	nples repre tuted in a sm 00 particle d then direc	sentative of nall volume of or better cle ctly injected	f the lot. Th of 2% SEAS ean-room co into the ICF	e samples a ΓAR™ BAS onditions. F	are slowly SELINE[®] or volatile		4A	5A	6A	7A	
<5	3B	4B	5B	6B	7B		8		1B	2B	< <u>50</u>					
20 C a <50	21 Sc <1	22 Ті <10	23 V <1	24 C r <10	25 Mi <2	1 26 F e <50	27 Co <1	28 Ni <10	29 C u <5	30 Zn <5	31 Ga <10					
38 Sr <1	39 Y <1	40 Zr <1	41 Nb <1	42 Mo <10		44 Ru <10	1 45 Rh <1	46 Pd <10	47 Ag <2	48 Cd <1	49 In <1	50 S n <20	51 Sb <50	52 ⊺e <10		÷.,
56 B a <1	57 La <0.05	72 Hf <0.05	73 Та <20	74 W <10	75 R <5		i.	78 Pt <1	79 Au <1		<mark>81 TI</mark> <0.1	82 Pb <1	83 Bi <0.1			
	2A 4 Be <5 a 12 Mg <5 c 20 Ca <50 c 38 Sr <1 5 56 Ba	2AMost eler average evaporat Nitric Aci elements times the 3B12Mg elements times the 3B20Ca <50	2A Most elements are daverage of three alive evaporated to drynes Nitric Acid. Operation elements (indicated times the standard do 3B a 12 Mg a 12 Mg <5	2A4Be <5<5	2AMost elements are determined by magnetic average of three aliquots subsampled from evaporated to dryness, the resulting residue Nitric Acid. Operations are conducted und elements (indicated by *), the acid sampled times the standard deviation of the blank are 3B4 Mg elements (indicated by *), the acid sampled times the standard deviation of the blank are 3B3B4B5B6B20Ca21Sc22Ti23V24Cr3839Y40Zr41Nb42Mod038Sr39Y40Zr41Nb42Mod038Sr39Y40Zr41Nb42Mod038Sr39Y40Zr41Nb42Mod038Sr39Y40Zr41Nb42Mod03556Ba57La72Hf73Ta74W	2AMost elements are determined by magnetic sector ICF average of three aliquots subsampled from three sar evaporated to dryness, the resulting residue is reconstri Nitric Acid. Operations are conducted under Class 1 elements (indicated by *), the acid samples are dilute times the standard deviation of the blank are shown with 3Ba12Mg elements (indicated by *), the acid samples are dilute times the standard deviation of the blank are shown with 3B4B5B6B7Ba20Ca21Sc22Ti23V24Cr25Mr3B4B5B6B7B7B74V25Mr5038Sr39Y40Zr41Nb42Moa56Ba57La72Hf73Ta74W75Ref	2AMost elements are determined by magnetic sector ICP-MS using a average of three aliquots subsampled from three samples repreevaporated to dryness, the resulting residue is reconstituted in a sm Nitric Acid. Operations are conducted under Class 100 particle elements (indicated by *), the acid samples are diluted then direct times the standard deviation of the blank are shown with "<", no blan 3B4Mg5B6B7B420Ca21Sc22Ti23V24Cr25Mn26Fe53B4B5B6B7B7B74V25Mn26Fe538Sr39Y40Zr41Nb42Mo44Ru556Ba57La72Hf73Ta74W75Re	2AMost elements are determined by magnetic sector ICP-MS using sample pre average of three aliquots subsampled from three samples representative of evaporated to dryness, the resulting residue is reconstituted in a small volume of Nitric Acid. Operations are conducted under Class 100 particle or better cla elements (indicated by *), the acid samples are diluted then directly injected times the standard deviation of the blank are shown with "<", no blank value is su 3Ba12Mg elements (indicated by *), the acid samples are diluted then directly injected times the standard deviation of the blank are shown with "<", no blank value is su 3Ba20Ca21Sc22Ti23V24Cr25Mn26Fe27Coa38Sr39Y40Zr41Nb42Mo44Ru45Rha56Ba57La72Hf73Ta74W75Re	2A4Be <5	2A Most elements are determined by magnetic sector ICP-MS using sample preconcentration. The result average of three aliquots subsampled from three samples representative of the lot. The samples revaporated to dryness, the resulting residue is reconstituted in a small volume of 2% SEASTAR [™] BAS 4 Be <5	2A Most elements are determined by magnetic sector ICP-MS using sample preconcentration. The results are an average of three aliquots subsampled from three samples representative of the lot. The samples are slowly evaporated to dryness, the resulting residue is reconstituted in a small volume of 2% SEASTAR [™] BASELINE® Nitric Acid. Operations are conducted under Class 100 particle or better clean-room conditions. For volatile elements (indicated by *), the acid samples are diluted then directly injected into the ICP-MS. Values below 3 times the standard deviation of the blank are shown with "<", no blank value is subtracted.	2AMost elements are determined by magnetic sector ICP-MS using sample preconcentration. The results are an average of three aliquots subsampled from three samples representative of the lot. The samples are slowly evaporated to dryness, the resulting residue is reconstituted in a small volume of 2% SEASTAR TM BASELINE* (Nitric Acid. Operations are conducted under Class 100 particle or better clean-room conditions. For volatile elements (indicated by *), the acid samples are diluted then directly injected into the ICP-MS. Values below 3 times the standard deviation of the blank are shown with "<", no blank value is subtracted.3A20Ca21Sc22Ti23V24Cr25Mn26Fe27Co28Ni29Cu30Zn31Ga384B5B6B7B81B2B21Sc22Ti23V24Cr25Mn26Fe27Co28Ni29Cu30Zn31Ga45038Sr39Y40Zr41Nb42Mo44Ru45Rh46Pd47Ag48Cd49In556Ba57La72Hf73Ta74W75Re78Pt79Au81TI	A Most elements are determined by magnetic sector ICP-MS using sample preconcentration. The results are an average of three aliquots subsampled from three samples representative of the lot. The samples are slowly evaporated to dryness, the resulting residue is reconstituted in a small volume of 2% SEASTAR ^M BASELINE* Nitric Acid. Operations are conducted under Class 100 particle or better clean-room conditions. For volatile elements (indicated by *), the acid samples are diluted then directly injected into the ICP-MS. Values below 3 times the standard deviation of the blank are shown with "<", no blank value is subtracted.3A4A20Ca21Sc22Ti23V24Cr25Mn26Fe27Co28Ni29Cu30Zn31Ga20Ca21Sc22Ti23V24Cr25Mn26Fe27Co28Ni29Cu30Zn31Ga20Ca21Sc22Ti23V24Cr25Mn26Fe27Co28Ni29Cu30Zn31Ga20Ca21Sc22Ti23V24Cr25Mn26Fe27Co28Ni29Cu30Zn31Ga<10	A Most elements are determined by magnetic sector ICP-MS using sample preconcentration. The results are average of three aliquots subsampled from three samples representative of the lot. The samples are slowly evaporated to dryness, the resulting residue is reconstituted in a small volume of 2% SEASTAR [™] BASELINE Nitric Acid. Operations are conducted under Class 100 particle or better clean-room conditions. For volatile elements (indicated by *), the acid samples are diluted then directly injected into the ICP-MS. Values below 3 times the standard deviation of the blank are shown with "<", no blank value is subtracted.3A4A5A20Ca21Sc22Ti23V24Cr25Mn26Fe27Co28Ni29Cu30Zn31Ga20Ca21Sc22Ti23V24Cr25Mn26Fe27Co28Ni29Cu30Zn31Ga20Ca21Sc22Ti23V24Cr25Mn26Fe27Co28Ni29Cu30Zn31Ga20Ca21Sc22Ti24Cr25Mn26Fe27Co28Ni29Cu30Zn31Ga20Ca21Sc22Ti24Cr25So<1	A Most elements are determined by magnetic sector ICP-MS using sample preconcentration. The results are an average of three aliquots subsampled from three samples representative of the lot. The samples are slowly evaporated to dryness, the resulting residue is reconstituted in a small volume of 2% SEASTAR TM BASELINE*3A4A5A6A4Be evaporated to dryness, the resulting residue is reconstituted in a small volume of 2% SEASTAR TM BASELINE* elements (indicated by *), the acid samples are diluted then directly injected into the ICP-MS. Values below 3 times the standard deviation of the blank are shown with "<", no blank value is subtracted.	A Most elements are determined by magnetic sector ICP-MS using sample preconcentration. The results are an average of three aliquots subsampled from three samples representative of the lot. The samples are slowly evaporated to dryness, the resulting residue is reconstituted in a small volume of 2% SEASTAR [™] BASELINE [®] Nitric Acid. Operations are conducted under Class 100 particle or better clean-room conditions. For volatile elements (indicated by *), the acid samples are diluted then directly injected into the ICP-MS. Values below 3 times the standard deviation of the blank are shown with "<", no blank value is subtracted.3A4A5A6A7A12Mg elements (indicated by *), the acid samples are diluted then directly injected into the ICP-MS. Values below 3 times the standard deviation of the blank are shown with "<", no blank value is subtracted.

ALL VALUES ARE REPORTED IN PARTS PER TRILLION (PPT)

<u>KEY</u>	(1) Atomic Number	58 Ce	59 Pr	60 Nd		62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
	(2) Elemental Symbol	<0.05	<0.05	<0.05		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
(3) (4)	(3) Concentration (mean														
	(4) 1 Standard Deviation	90 Th		92 U	1.1										
	(N=3)	<0.05		<0.01		_			E						
	(-									

Release Date:	January 27, 2005
Expiry Date:	January 27, 2008

Product Integrity:

Based on extensive testing results, SEASTAR CHEMICALS INC have found our products, unopened and sealed, maintain the certified integrity, or product quality, for a minimum of three years under the following conditions:

•Stored at room temperature, maximum range 15°C (59°F) to 25°C (77°F).

Minimum exposure to light.

For limited time, storage/transport temperature range 5°C (41°F) to 35°C (95°F)

Upon opening the product, the product's integrity will depend on proper handling and exposure to contaminants. The product has been bottled under CLASS 100 clean room conditions, to maintain the certified quality it should be used under these conditions.

Prior to opening or storing this product be sure to consult the Material Safety Data Sheet (MSDS) Section 7 Handling and Storage to ensure safe storage and handling with regards to this hazardous material. This information must be understood prior to its use or storage.

A further note to reduce trace metal contamination: The inner pack of plastic bags and bottle should be opened under CLASS 100 particle conditions to maintain the integrity of the product. The use of plastic gloves, hair net and a clean room suit is also advised.

Appropriate safety precautions must be taken as well as wearing the required safety apparel. A properly functioning fumehood, protection for eyes, hands, feet and exposed skin must also be worn. All of these items must conform to local/regional/national regulatory requirements.

Dr. B. McKelvey QA/QC Manager

10005 McDonald Park Road, Sidney, BC, Canada V8L 3S8 phone: (250) 655-5880 fax: (250) 655-5888 toll free: 1 (800) 663-2330 (within Canada & U.S. only) Email: seastar.chemicals@axys.com web: www.seastarchemicals.com