## CERTIFICATE OF ANALYSIS

# **BASELINE®** Ammonia Solution

|                     | PRODU                                              | JCT NU                                                                                                                         | MBER:                                                                                                                                                                                                                   | S02070                                                                                                                                                                                                                                                                                                                    | )1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LOT N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IUMBEI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R: 7216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SAY (NI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13, w/w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ): 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |    |
|---------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|
| _                   | average<br>evaporate<br>Nitric Acid<br>For volati  | of three ali<br>ed to dryne<br>d / 2% Hydr<br>le elements                                                                      | quots subs<br>ss. The resi<br>ogen Perox<br>s (indicated                                                                                                                                                                | ampled fron<br>ulting residu<br>ide. Operati<br>by *), the ac                                                                                                                                                                                                                                                             | n three sam<br>e is reconst<br>ons are con<br>id samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nples repres<br>ituted in a s<br>ducted und<br>are diluted t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | sentative of<br>mall volume<br>er Class 100<br>hen directly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | the lot. The<br>of SEASTA<br>or better cl<br>injected int                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e samples a<br>AR™ BASEL<br>ean-room c<br>o the ICP-M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | are slowly<br>INE® 2%<br>onditions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3A<br>13 AI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7A |    |
| < 0.5               | 3B                                                 | 4B                                                                                                                             | 5B                                                                                                                                                                                                                      | 6B                                                                                                                                                                                                                                                                                                                        | 7B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | uc is subtra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |    |
| <b>20</b> Ca < 10   | <b>21 Sc</b> < 0.01                                | <b>22</b> Ti < 0.5                                                                                                             | <b>23 V</b> < 0.5                                                                                                                                                                                                       | <b>24</b> Cr < 0.2                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29 Cu<br>< 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30 Zn<br>< 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>31 G</b> a < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>32 G</b> e < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>33 As</b> < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 34 Se < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |    |
| <b>38</b> Sr < 0.05 | <b>39 Y</b> < 0.01                                 | <b>40 Z</b> r < 0.01                                                                                                           | <b>41 Nb</b> < 0.01                                                                                                                                                                                                     | <b>42 Mo</b> < 0.02                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>44 Ru</b> < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>45</b> Rh < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>46</b> Pd < 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>47 Ag</b> < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>48 Cd</b> < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>49</b> In < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>50</b> Sn < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>51 Sb</b> < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>52 Te</b> < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |    |
| <b>56 Ba</b> < 0.05 | <b>57</b> La < 0.01                                | <b>72 Hf</b> < 0.1                                                                                                             | 73 Ta                                                                                                                                                                                                                   | <b>74 W</b> < 0.1                                                                                                                                                                                                                                                                                                         | <b>75</b> Re < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>78 Pt</b> < 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>79</b> Au < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>80</b> Hg < 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>81 TI</b> < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>82 Pb</b> < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>83 B</b> i < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |    |
|                     | 4 Be < 0.05  12 Mg < 0.5  20 Ca < 10  38 Sr < 0.05 | 2A Most eler average evaporate Nitric Acid For volating below 3 to 3B  20 Ca 21 Sc < 10 < 0.01  38 Sr 39 Y < 0.05  56 Ba 57 La | 2A  4 Be average of three ali evaporated to dryne Nitric Acid / 2% Hydr For volatile elements below 3 times the state 3B  20 Ca 21 Sc 22 Ti < 10 < 0.01 < 0.5  38 Sr 39 Y 40 Zr < 0.05 < 0.01 < 0.01  56 Ba 57 La 72 Hf | 2A  4 Be average of three aliquots subsequated to dryness. The resultince Acid / 2% Hydrogen Peroxember 50.5  12 Mg For volatile elements (indicated below 3 times the standard deviation 3B 4B 5B  20 Ca 21 Sc 22 Ti 23 V < 10 < 0.01 < 0.5  38 Sr 39 Y 40 Zr 41 Nb < 0.05 < 0.01 < 0.01 < 0.01  56 Ba 57 La 72 Hf 73 Ta | 2A  4 Be average of three aliquots subsampled from evaporated to dryness. The resulting residu Nitric Acid / 2% Hydrogen Peroxide. Operating For volatile elements (indicated by *), the acid below 3 times the standard deviation of the back of the standard devia | 4 Be average of three aliquots subsampled from three same evaporated to dryness. The resulting residue is reconst Nitric Acid / 2% Hydrogen Peroxide. Operations are const Nitric Acid / 2% Hydrogen Peroxide. Operations are const Selow 3 times the standard deviation of the blank are shown as the standard deviation of the blank are shown as the standard deviation of the blank are shown as the standard deviation of the blank are shown as the standard deviation of the blank are shown as the standard deviation of the blank are shown as the standard deviation of the blank are shown as the standard deviation of the blank are shown as the standard deviation of the blank are shown as the standard deviation of the blank are shown as the standard deviation of the blank are shown as the standard deviation of the blank are shown as the standard deviation of the blank are shown as the standard deviation of the blank are shown as the standard deviation of the blank are shown as the standard deviation of the blank are shown as the standard deviation of the blank are shown as the standard deviation of the blank are shown as the standard deviation of the blank are shown as the standard deviation of the blank are shown as the standard deviation of the blank are shown as the standard deviation of the blank are shown as the standard deviation of the blank are shown as the standard deviation of the blank are shown as the standard deviation of the blank are shown as the standard deviation of the blank are shown as the standard deviation of the blank are shown as the standard deviation of the blank are shown as the standard deviation of the blank are shown as the standard deviation of the blank are shown as the standard deviation of the blank are shown as the standard deviation of the blank are shown as the standard deviation of the blank are shown as the standard deviation of the blank are shown as the standard deviation of the blank are shown as the standard deviation of the blank are shown as the standard deviation of the blank are | Most elements are determined by high resolution ICP-MS using saverage of three aliquots subsampled from three samples represe evaporated to dryness. The resulting residue is reconstituted in a saverage of three aliquots subsampled from three samples represe evaporated to dryness. The resulting residue is reconstituted in a saverage of three aliquots subsampled from three samples represe evaporated to dryness. The resulting residue is reconstituted in a saverage of three aliquots subsampled from three samples represe evaporated to dryness. The resulting residue is reconstituted in a saverage of three aliquots subsampled from three samples represe evaporated to dryness. The resulting residue is reconstituted in a saverage of three aliquots subsampled from three samples represe evaporated to dryness. The resulting residue is reconstituted in a saverage of three aliquots subsampled from three samples represe evaporated to dryness. The resulting residue is reconstituted in a saverage of three aliquots subsampled from three samples represe evaporated to dryness. The resulting residue is reconstituted in a saverage of three aliquots subsampled from three samples represe evaporated to dryness. The resulting residue is reconstituted in a saverage of three aliquots subsampled from three samples represe evaporated to dryness. The resulting residue is reconstituted in a saverage of three aliquots subsampled from three samples represe evaporated to dryness. The resulting residue is reconstituted in a saverage of three aliquots subsampled from three samples represe evaporated in a saverage of three aliquots subsampled from three samples represedue is reconstituted in a saverage of three aliquots subsampled from three samples represedue is reconstituted in a saverage of three aliquots subsampled from three samples represedue is reconstituted in a saverage of three aliquots subsampled from three samples represedue is reconstituted in a saverage of three aliquots subsampled from three samples represedue is reconstituted in a sa | Most elements are determined by high resolution ICP-MS using sample pred average of three aliquots subsampled from three samples representative of evaporated to dryness. The resulting residue is reconstituted in a small volume Nitric Acid / 2% Hydrogen Peroxide. Operations are conducted under Class 100 For volatile elements (indicated by *), the acid samples are diluted then directly below 3 times the standard deviation of the blank are shown with '<', no blank valued as a small volume of the blank are shown with '<', no blank valued as a small volume of the blank are shown with '<', no blank valued as a small volume of the blank are shown with '<', no blank valued as a small volume of the blank are shown with '<', no blank valued as a small volume of the blank are shown with '<', no blank valued as a small volume of the blank are shown with '<', no blank valued as a small volume of the blank are shown with '<', no blank valued as a small volume of the blank are shown with '<', no blank valued as a small volume of the blank are shown with '<', no blank valued as a small volume of the blank are shown with '<', no blank valued as a small volume of the blank are shown with '<', no blank valued as a small volume of the blank are shown with '<', no blank valued as a small volume of the blank are shown with '<', no blank valued as a small volume of the blank are shown with '<', no blank valued as a small volume of the blank are shown with '<', no blank valued as a small volume of the blank are shown with '<', no blank valued as a small volume of the blank are shown with '<', no blank valued as a small volume of the blank are shown with '<', no blank valued as a small volume of the blank are shown with '<', no blank valued as a small volume of the blank are shown with '<', no blank valued as a small volume of the blank are shown with '<', no blank valued as a small volume of the blank are shown with '<', no blank valued as a small volume of the blank are shown with '<', no blank are shown with '<', no blank are shown | Most elements are determined by high resolution ICP-MS using sample preconcentration average of three aliquots subsampled from three samples representative of the lot. The evaporated to dryness. The resulting residue is reconstituted in a small volume of SEASTA Nitric Acid / 2% Hydrogen Peroxide. Operations are conducted under Class 100 or better 100 or better 100 or better 100 or be | A Be average of three aliquots subsampled from three samples representative of the lot. The samples average of three aliquots subsampled from three samples representative of the lot. The samples average of three aliquots subsampled from three samples representative of the lot. The samples average of three aliquots subsampled from three samples representative of the lot. The samples average of three aliquots subsampled from three samples representative of the lot. The samples average of three aliquots subsampled from three samples representative of the lot. The samples average of three aliquots subsampled from three samples representative of the lot. The samples average of three aliquots subsampled from three samples representative of the lot. The samples average of three aliquots subsampled from three samples representative of the lot. The samples average of three aliquots subsampled from three samples representative of the lot. The samples average of three aliquots subsampled from three samples representative of the lot. The samples average of three aliquots subsampled from three samples representative of the lot. The samples average of three aliquots subsampled from three samples representative of the lot. The samples average of three aliquots subsampled from three samples representative of the lot. The samples average of three aliquots subsampled from three samples representative of the lot. The samples average of three aliquots subsampled from three samples representative of the lot. The samples average of three aliquots subsampled from three samples representative of the lot. The samples average of three aliquots subsampled from three samples representative of the lot. The samples representative of | Most elements are determined by high resolution ICP-MS using sample preconcentration. The results are an average of three aliquots subsampled from three samples representative of the lot. The samples are slowly evaporated to dryness. The resulting residue is reconstituted in a small volume of SEASTAR™ BASELINE® 2% Nitric Acid / 2% Hydrogen Peroxide. Operations are conducted under Class 100 or better clean-room conditions. For volatile elements (indicated by *), the acid samples are diluted then directly injected into the ICP-MS. Values below 3 times the standard deviation of the blank are shown with '<', no blank value is subtracted.  3B 4B 5B 6B 7B 8 1B 2B  20 Ca 21 Sc 22 Ti 23 V 24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn < 10 < 0.01 < 0.01 < 0.5 < 0.5 < 0.2 < 0.02 < 0.5 < 0.02 < 2 < 0.5 < 1  38 Sr 39 Y 40 Zr 41 Nb 42 Mo < 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd < 0.05 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.02  56 Ba 57 La 72 Hf 73 Ta 74 W 75 Re 78 Pt 79 Au 80 Hg | A Most elements are determined by high resolution ICP-MS using sample preconcentration. The results are an average of three aliquots subsampled from three samples representative of the lot. The samples are slowly evaporated to dryness. The resulting residue is reconstituted in a small volume of SEASTAR™ BASELINE® 2% Nitric Acid / 2% Hydrogen Peroxide. Operations are conducted under Class 100 or better clean-room conditions. For volatile elements (indicated by *), the acid samples are diluted then directly injected into the ICP-MS. Values below 3 times the standard deviation of the blank are shown with '<', no blank value is subtracted.  3B 4B 5B 6B 7B 8 1B 2B  20 Ca 21 Sc 22 Ti 23 V 24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn 31 Ga < 10 < 0.01 < 0.5 < 0.5 < 0.2 < 0.02 < 0.5 < 0.02 < 2 < 0.5 < 1 < 0.01  38 Sr 39 Y 40 Zr 41 Nb 42 Mo 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd 49 In < 0.05 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01  56 Ba 57 La 72 Hf 73 Ta 74 W 75 Re 78 Pt 79 Au 80 Hg 81 TI | A Most elements are determined by high resolution ICP-MS using sample preconcentration. The results are an average of three aliquots subsampled from three samples representative of the lot. The samples are slowly evaporated to dryness. The resulting residue is reconstituted in a small volume of SEASTAR™ BASELINE® 2% Nitric Acid / 2% Hydrogen Peroxide. Operations are conducted under Class 100 or better clean-room conditions.  12 Mg   For volatile elements (indicated by *), the acid samples are diluted then directly injected into the ICP-MS. Values below 3 times the standard deviation of the blank are shown with '<', no blank value is subtracted.  3B 4B 5B 6B 7B 8 1B 2B  20 Ca 21 Sc 22 Ti 23 V 24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn 31 Ga 32 Ge 4 10 < 0.01 < 0.5 < 0.5 < 0.5 < 0.2 < 0.02 < 0.5 < 0.02 < 2 < 0.5 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.05 Sn < 0.05 < 0.01 < 0.01 < 0.01 < 0.01 < 0.05 Sn < 0.05 Sn < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.05 Sn | A Be < 0.05  Whitric Acid / 2% Hydrogen Peroxide. Operations are conducted under Class 100 or better clean-room conditions. For volatile elements (indicated by *), the acid samples are slown with '<', no blank value is subtracted.  Be < 0.5  Ca 21 Sc 22 Ti 23 V 24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.05 < 0.01 < 0.01 < 0.05 < 0.01 < 0.01 < 0.05 < 0.01 < 0.01 < 0.05 < 0.01 < 0.01 < 0.05 < 0.01 < 0.01 < 0.05 < 0.01 < 0.05 < 0.01 < 0.01 < 0.05 < 0.01 < 0.05 < 0.01 < 0.01 < 0.05 < 0.01 < 0.05 < 0.01 < 0.05 < 0.01 < 0.01 < 0.05 < 0.01 < 0.01 < 0.05 < 0.01 < 0.05 < 0.01 < 0.05 < 0.01 < 0.01 < 0.05 < 0.01 < 0.05 < 0.05 < 0.01 < 0.01 < 0.05 < 0.01 < 0.05 < 0.01 < 0.01 < 0.05 < 0.01 < 0.05 < 0.01 < 0.05 < 0.01 < 0.05 < 0.05 < 0.01 < 0.01 < 0.05 < 0.01 < 0.05 < 0.01 < 0.01 < 0.05 < 0.01 < 0.05 < 0.01 < 0.05 < 0.01 < 0.01 < 0.05 < 0.01 < 0.05 < 0.01 < 0.05 < 0.01 < 0.01 < 0.05 < 0.01 < 0.01 < 0.05 < 0.01 < 0.01 < 0.05 < 0.01 < 0.01 < 0.05 < 0.01 < 0.01 < 0.05 < 0.01 < 0.01 < 0.05 < 0.01 < 0.05 < 0.01 < 0.01 < 0.05 < 0.01 < 0.01 < 0.05 < 0.01 < 0.05 < 0.01 < 0.01 < 0.05 < 0.01 < 0.01 < 0.05 < 0.01 < 0.01 < 0.05 < 0.01 < 0.01 < 0.05 < 0.01 < 0.01 < 0.05 < 0.01 < 0.01 < 0.01 < 0.01 < 0.05 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.0 | 2A | 2A |

#### ALL VALUES ARE REPORTED IN PARTS PER TRILLION (PPT)

| <u> </u> |    |  |  |  |  |  |  |
|----------|----|--|--|--|--|--|--|
| (1) (2)  | 1  |  |  |  |  |  |  |
| (') (~)  | ١, |  |  |  |  |  |  |
| (3)      | (  |  |  |  |  |  |  |
|          | ١, |  |  |  |  |  |  |
| (/)      |    |  |  |  |  |  |  |

(1) Atomic Number

(2) Elemental Symbol

(3) Concentration (mean in ppt)

(4) 1 Standard Deviation (N=3)

| 58 Ce  | 59 Pr  | 60 Nd  | 62 Sm  | 63 Eu  | 64 Gd  | 65 Tb  | 66 Dy  | 67 Ho  | 68 Er  | 69 Tm  | 70 Yb  | 71 Lu  |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 |
|        |        |        |        |        |        |        |        |        |        |        |        |        |
| 90 Th  |        | 92 U   |        |        |        |        |        |        |        |        |        |        |
| < 0.01 | Ł.     | < 0.01 |        |        |        |        |        |        |        |        |        |        |
|        | *      |        |        |        |        |        |        |        |        |        |        |        |



NH<sub>3</sub> (20 - 22%): Properties

Molar Mass: 17.03g/mol

Density: 0.92 g/ml

Molarity: 11 moles/litre

Normality: 11 moles/litre

Release Date:

May 05, 2016

**Expiry Date:** 

May 05, 2019

Greg Henson QA & RA Manager



## **Product Integrity:**

Based on extensive testing results, SEASTAR CHEMICALS INC have found our products, unopened and sealed, maintain the certified integrity, or product quality, for a minimum of three years under the following conditions:

- Stored at room temperature, maximum range 15°C (59°F) to 25°C (77°F).
- Minimum exposure to light.
- For limited time, storage/transport temperature range 5°C (41°F) to 35°C (95°F)

Upon opening the product, the product's integrity will depend on proper handling and exposure to contaminants. The product has been bottled under CLASS 100 clean room conditions, to maintain the certified quality it should be used under these conditions. Furthermore to reduce trace metal contamination, the inner pack of plastic bags and bottle should be opened under CLASS 100 particle conditions to maintain the integrity of the product. The use of plastic gloves, hair net and a clean room suit is also advised.

### Safety:

PRIOR to opening or storing this product be sure to consult the Material Safety Data Sheet (MSDS) Section 7 Handling and Storage to ensure safe storage and handling with regards to this hazardous material. This information must be understood prior to its use or storage.

SAFETY HANDLING NOTES: Consult your MSDS, PRIOR to handling these materials. Use proper safety apparel according to the recommendations of the MSDS. Exposure controls and personal protection should include: a properly functioning fume hood, protection for eyes (safety glasses), hands (chemically compatible gloves), feet (chemically compatible boots) and exposed skin (splash protection and a chemically compatible apron). All of these items must conform to local/regional/national regulatory requirements.

Greg Henson

Brey denon-

QA & RA Manager

10005 McDonald Park Road, Sidney, BC, Canada V8L 5Y2

phone: (250) 655-5880 fax: (250) 655-5888

toll free: 1 (800) 663-2330 (within Canada & U.S. only) Email: <a href="mailto:seastar.technicals.upport@seastarchemicals.com">seastar.technicals.upport@seastarchemicals.com</a>

Web: www.seastarchemicals.com