CERTIFICATE OF ANALYSIS

BASELINE® Ammonia Solution

PRODUCT NU	JMBER: \$0207	701 (BA-07) L	OT NUMBER:	7208040	ASSAY (N	H ₃ , w/w)	20%	
average of three all evaporated to dryne	iquots subsampled ess, the resulting resi	from three samples idue is reconstituted	s representative of the in a small volume of 2%	e lot. The samples are s % SEASTAR [™] BASELI	owly N e ®	4A	5A 6	A 7A
elements (indicated	by *), the acid sam leviation of the blank	nples are diluted the are shown with "<", I	en directly injected into	the ICP-MS. Values belacted.	ow 3 13 A < 10	1		
21 Sc 22 Ti						a 32 Ge < 1	1 1 1 1 1 1	Se 50
39 Y 40 Zr						50 Sn < 5		Te 1
		W 75 Re	78			82 Pb	83 Bi < 0.1	
	Most elements are of average of three all evaporated to dryne Nitric Acid. Operating elements (indicated times the standard of 3B 4B 21 Sc 22 Ti < 2 < 5 < 39 Y 40 Zr < 1 < 1 < 1 < 1 < 1 < 1 < 57 La 72 Hf	Most elements are determined by magraverage of three aliquots subsampled evaporated to dryness, the resulting resiling r	Most elements are determined by magnetic sector ICP-MS average of three aliquots subsampled from three samples evaporated to dryness, the resulting residue is reconstituted. Nitric Acid. Operations are conducted under Class 100 p elements (indicated by *), the acid samples are diluted the times the standard deviation of the blank are shown with "<", 3B 4B 5B 6B 7B 21 Sc 22 Ti 23 V 24 Cr 25 Mn 26 < 2 < 5 < 5 < 5 39 Y 40 Zr 41 Nb 42 Mo < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 <	Most elements are determined by magnetic sector ICP-MS using sample preconaverage of three aliquots subsampled from three samples representative of the evaporated to dryness, the resulting residue is reconstituted in a small volume of 2°C Nitric Acid. Operations are conducted under Class 100 particle or better cleanelements (indicated by *), the acid samples are diluted then directly injected into times the standard deviation of the blank are shown with "<", no blank value is subtraction as a small volume of 2°C samples are diluted then directly injected into times the standard deviation of the blank are shown with "<", no blank value is subtraction as a small volume of 2°C samples are diluted then directly injected into times the standard deviation of the blank are shown with "<", no blank value is subtraction as a value is value is valu	average of three aliquots subsampled from three samples representative of the lot. The samples are sleevaporated to dryness, the resulting residue is reconstituted in a small volume of 2% SEASTAR™ BASELII Nitric Acid. Operations are conducted under Class 100 particle or better clean-room conditions. For volume elements (indicated by *), the acid samples are diluted then directly injected into the ICP-MS. Values below times the standard deviation of the blank are shown with "<", no blank value is subtracted. 3B 4B 5B 6B 7B 8 1B 2 21 Sc 22 Ti 23 V 24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 < 2 < 5 < 5 < 5 < 10 < 1 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	Most elements are determined by magnetic sector ICP-MS using sample preconcentration. The results are an average of three aliquots subsampled from three samples representative of the lot. The samples are slowly evaporated to dryness, the resulting residue is reconstituted in a small volume of 2% SEASTAR™ BASELINE® Nitric Acid. Operations are conducted under Class 100 particle or better clean-room conditions. For volatile elements (indicated by *), the acid samples are diluted then directly injected into the ICP-MS. Values below 3 times the standard deviation of the blank are shown with "<", no blank value is subtracted. 3B 4B 5B 6B 7B 8 1B 2B 121 Sc 22 Ti 23 V 24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn 31 Gr < 2 < 5 < 5 < 5 < 1 < 1 < 39 Y 40 Zr 41 Nb 42 Mo < 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd 49 Ir < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 <	Most elements are determined by magnetic sector ICP-MS using sample preconcentration. The results are an average of three aliquots subsampled from three samples representative of the lot. The samples are slowly evaporated to dryness, the resulting residue is reconstituted in a small volume of 2% SEASTAR™ BASELINE® Nitric Acid. Operations are conducted under Class 100 particle or better clean-room conditions. For volatile elements (indicated by *), the acid samples are diluted then directly injected into the ICP-MS. Values below 3 times the standard deviation of the blank are shown with "<", no blank value is subtracted. 3B 4B 5B 6B 7B 8 1B 2B 21 Sc 22 Ti 23 V 24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn 31 Ga 32 Ge < 2 < 5 < 2 < 5 < 5 < 5 < 5 < 1 < 1 39 Y 40 Zr 41 Nb 42 Mo 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd 49 In 50 Sn < 1 < 1 < 1 < 1 < 5 < 5 57 La 72 Hf 73 Ta 74 W 75 Re 78 Pt 79 Au 80 Hg 81 TI 82 Pb	Most elements are determined by magnetic sector ICP-MS using sample preconcentration. The results are an average of three aliquots subsampled from three samples representative of the lot. The samples are slowly evaporated to dryness, the resulting residue is reconstituted in a small volume of 2% SEASTAR™ BASELINE® Nitric Acid. Operations are conducted under Class 100 particle or better clean-room conditions. For volatile elements (indicated by *), the acid samples are diluted then directly injected into the ICP-MS. Values below 3 times the standard deviation of the blank are shown with "<", no blank value is subtracted. 3B 4B 5B 6B 7B 8 1B 2B 121 Sc 22 Ti 23 V 24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn 31 Ga 32 Ge 33 As 34 < 2 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 1 < 1 < 1

ALL VALUES ARE REPORTED IN PARTS PER TRILLION (PPT)

KEY	(1) Atomic Number
(1) (2)	(2) Elemental Symbol (3) Concentration (mean
(3)	(3) Concentration (mean
(4)	in ppt)
	(4) 1 Standard Deviation
	(N=3)

58 Ce	59 Pr	60 Nd	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
90 Th		92 U										
< 0.1		< 0.1										

NH₃ (20 - 22%): Properties

Molar Mass: 17.03g/mol

Density: 0.92 g/ml

Molarity: 11 moles/litre

Normality: 11 moles/litre

B Mc Kelvey
Dr. B. McKelvey
QA/QC Manager

Release Date: April 22, 2008 Expiry Date: April 22, 2011

Product Integrity:

Based on extensive testing results, SEASTAR CHEMICALS INC have found our products, unopened and sealed, maintain the certified integrity, or product quality, for a minimum of three years under the following conditions:

- Stored at room temperature, maximum range 15°C (59°F) to 25°C (77°F).
- Minimum exposure to light.
- For limited time, storage/transport temperature range 5°C (41°F) to 35°C (95°F)

Upon opening the product, the product's integrity will depend on proper handling and exposure to contaminants. The product has been bottled under CLASS 100 clean room conditions, to maintain the certified quality it should be used under these conditions. Furthermore to reduce trace metal contamination, the inner pack of plastic bags and bottle should be opened under CLASS 100 particle conditions to maintain the integrity of the product. The use of plastic gloves, hair net and a clean room suit is also advised.

Safety:

PRIOR to opening or storing this product be sure to consult the Material Safety Data Sheet (MSDS) Section 7 Handling and Storage to ensure safe storage and handling with regards to this hazardous material. This information must be understood prior to its use or storage.

SAFETY HANDLING NOTES: Consult your MSDS, PRIOR to handling these materials. Use proper safety apparel according to the recommendations of the MSDS. Exposure controls and personal protection should include: a properly functioning fume hood, protection for eyes (safety glasses), hands (chemically compatible gloves), feet (chemically compatible boots) and exposed skin (splash protection and a chemically compatible apron). All of these items must conform to local/regional/national regulatory requirements.

Dr. B. McKelvey QA/QC Manager

10005 McDonald Park Road, Sidney, BC, Canada V8L 3S8

phone: (250) 655-5880 fax: (250) 655-5888

toll free: 1 (800) 663-2330 (within Canada & U.S. only) Email: seastar.technicals.upport@seastarchemicals.com

Web: www.seastarchemicals.com