CERTIFICATE OF ANALYSIS BASELINE[®] Sulfuric Acid

1A	P	RODUC		IBER: S	6020301		LOT NUMBER: 3210020					ASSAY (H ₂ SO ₄ , w/w): 95%						
3 Li 4 < 10 11 Na 1 < 50	Image: Nitric Acid / 2% Hydrogen Peroxide. Operations are conducted under Class 100 or better clean-room conditions. Image: Sector Volatile elements (indicated by *), the acid samples are diluted then directly injected into the ICP-MS. Values below 3 times the standard deviation of the blank are shown with 's' no blank value is subtracted																	
19 К 2 < 50	20 Ca < 40	21 Sc < 5	22 Ti < 50		24 Cr < 10		26 Fe < 20	27 Co < 1	<mark>28 Ni</mark> < 20	29 C u < 5		31 Ga < 1	32 Ge < 100	33 As * < 500	34 Se* < 500			
37 Rb 37 C 3	38 Sr < 1	39 Y < 1	40 Zr < 5	41 Nb < 1	42 Mo < 10			45 Rh < 1	46 Pd < 10	47 Ag < 5	<mark>48 Cd</mark> < 1	49 In < 1	50 Sn < 50	51 Sb < 10	52 Te < 10			
55 Cs 5 < 1	56 Ba < 10	57 La < 1	72 Hf < 0.1	73 Ta < 20	74 W < 5				78 Pt < 10		80 Hg* < 20	81 TI < 1	82 Pb < 5	83 Bi < 1				

ALL VALUES ARE REPORTED IN PARTS PER TRILLION (PPT)

KEY (1) Atomic Number (1) (2) (2) Elemental Symbol (3) (3) Concentration (mean	< 0.5	Ce 59	Pr < 0.1	60 N d < 0.1	62 Sm < 0.1	63 Eu < 0.1	64 Gd < 0.1	65 Tb < 0.1	66 Dy < 0.1	67 Ho < 0.1	68 Er < 0.1	69 Tm < 0.1	70 Yb < 0.1	71 Lu < 0.1
(4) (4) 1 Standard Deviation (N=3)	90 1	Γh		92 U < 0.1										

H2SO4 (93 - 98%): Properties Molar Mass: 98.07g/mol Density: 1.84 g/ml Molarity: 18 moles/litre Normality: 36 moles/litre

BMER

BASELINE

IN SEASTAR CHEMICALS INC

April 26, 2010

April 26, 2013

Release Date:

Expiry Date:

Product Integrity:

Based on extensive testing results, SEASTAR CHEMICALS INC have found our products, unopened and sealed, maintain the certified integrity, or product quality, for a minimum of three years under the following conditions:

- Stored at room temperature, maximum range 15°C (59°F) to 25°C (77°F).
- Minimum exposure to light.
- For limited time, storage/transport temperature range 5°C (41°F) to 35°C (95°F)

Upon opening the product, the product's integrity will depend on proper handling and exposure to contaminants. The product has been bottled under CLASS 100 clean room conditions, to maintain the certified quality it should be used under these conditions. Furthermore to reduce trace metal contamination, the inner pack of plastic bags and bottle should be opened under CLASS 100 particle conditions to maintain the integrity of the product. The use of plastic gloves, hair net and a clean room suit is also advised.

Safety:

PRIOR to opening or storing this product be sure to consult the Material Safety Data Sheet (MSDS) Section 7 Handling and Storage to ensure safe storage and handling with regards to this hazardous material. This information must be understood prior to its use or storage.

SAFETY HANDLING NOTES: Consult your MSDS, PRIOR to handling these materials. Use proper safety apparel according to the recommendations of the MSDS. Exposure controls and personal protection should include: a properly functioning fume hood, protection for eyes (safety glasses), hands (chemically compatible gloves), feet (chemically compatible boots) and exposed skin (splash protection and a chemically compatible apron). All of these items must conform to local/regional/national regulatory requirements.

BMer

Dr. B. McKelvey QA/QC Manager

10005 McDonald Park Road, Sidney, BC, Canada V8L 5Y2 phone: (250) 655-5880 fax: (250) 655-5888 toll free: 1 (800) 663-2330 (within Canada & U.S. only) Email: <u>seastar.technicalsupport@seastarchemicals.com</u> Web: <u>www.seastarchemicals.com</u>